Data Acquisition Toolbox
Adaptor Kit

For Use with MATLAPB’

Computation
Visualization

Programming

User’s Guide <4\The MathWorks

Version 2

X Lo

How to Contact The MathWorks:

www . mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Data Acquisition Toolbox Adaptor Kit User’s Guide
© COPYRIGHT 2000-2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.
New for Version 1 (Release 12)

Version 2 (Release 13)
Revised for Release 14

Printing History: November 2000 Online only
July 2002 Online only
June 2004 Online only

1]

2

Introduction

OVerview 1-2
Who Should Read This Document? 1-2
What Knowledge Is Required? 1-2
What Effort Is Required? 1-2
T00lS .« ottt e 1-3
Writing an Adaptor Versus Writing a MEX File 14
What Is the Adaptor Kit? 1-6
Toolbox Architecture 1-9
Using ThisManual 1-11
Tutorial

OVerVIEeW e 2-2
A Basic View of Toolbox-Engine-Adaptor Relationships 2-2
Example: an Analog Input Session 2-3
Example: an Analog Output Session 2-8
Example: a Digital /O Session 2-10

Contents

ii

Contents

Step-by-Step Instructions for Adaptor Creation

3

Overview: Building the Adaptor 3-2
Toolbox Adaptors i, 3-3
The winsound Adaptor 3-3
The cbi Adaptor it 3-3
The nidaq Adaptor 34
The hpel432 Adaptor 3-5
The keithley Adaptor 3-5
About the Demo Adaptor Software 3-7
Features 3-7
Limitations i 3-7
Modifying the Demo Adaptor 3-7
Stage 1 Select Supported Featurescc0u0n. 3-9
Limitations of Software-Clocked Adaptors 3-11

Stage 2 Create the Adaptor Project and Adaptor Class ..3-12

Step 2.1 Adaptor and Project Naming 3-12
Step 2.2 Add Include, Link, and MIDL Directories to

Your Project 3-13
Step 2.3 Define Adaptor Classes in the IDL File 3-14
Step 2.4 Add the Demo Adaptor Class Code 3-14

Step 2.5 Modify the Adaptor Class AdaptorInfo() Method ... 3-16

Stage 3 Implement the Analog Input Subsystem 3-18
Step 3.1 Select Property Values, Ranges, and Defaults for
AnalogInput 3-19

Step 3.2 Add the Demo Analog Input Code to Your Project .. 3-22
Step 3.3 Modify the OpenDevice Method of the Adaptor Class 3-24
Step 3.4 Modify the Analog Input Open and

SetDagHwInfo Methods 3-24
Step 3.5 Implement the SetProperty and

SetChannelProperty Methods 3-29
Step 3.6 Implement the ChildChange Method 3-33
Step 3.7 Implement the GetSingleValue Method 3-35
Step 3.8 Implement the GetSingleValues Method 3-37

Step 3.9 Implement the Start, Trigger, and Stop Methods .. 3-38

Returning Errors from Your Adaptor 3-45

Stage 4 Implement the Analog Output Subsystem 3-46
Step 4.1 Select Property Values, Ranges, and Defaults for

AnalogOutput i 3-47

Step 4.2 Add the Demo Analog Output Code to Your Project . 3-48
Step 4.3 Modify the OpenDevice Method of the Adaptor Class 3-48
Step 4.4 Modify the Analog Output Open and

SetDagHwInfo Methods 3-48
Step 4.5 Implement the SetProperty and

SetChannelProperty Methods 3-49
Step 4.6 Implement the ChildChange Method 3-49
Step 4.7 Implement the PutSingleValue Method 3-49
Step 4.8 Implement the PutSingleValues Method 3-50

Step 4.9 Implement the Start, Trigger, and Stop Methods .. 3-51

Stage 5 Implement the Digital I/O Subsystem 3-54
Step 5.1 Select Property Values, Ranges, and
Defaults for Digital /O 3-55
Step 5.2 Add the Digital I/O Code from an Adaptor to
Your Project 3-55

Step 5.3 Modify the OpenDevice Method of the Adaptor Class 3-56
Step 5.4 Modify the DigitallO Open and

SetDagHwInfo Methods 3-57
Step 5.5 Modify the SetPortDirection Method 3-57
Step 5.6 Implement the ReadValues Method 3-58
Step 5.7 Implement the WriteValues Method 3-59

iii

iv

Contents

Working with Properties

4

OVerVIEW e 4-2
Accessing Properties from Your Adaptor 4-4
Accessing a Property Using GetProperty 4-4
Attachingtoa Property 4-5
Creating Adaptor-Specific Properties 4-8
Modifying Property Values, Defaults, and Ranges 4-10
Setting a Range to Infinity 4-11
Working with Enumerated Properties 4-12
Passing Arrays to MATLAB Using Safe Arrays 4-14

Buffering Techniques

5]

OVerview 5-2
Understanding Engine Buffers 5-3
Implementing Buffering in Your Adaptor 5-6
Direct Buffering 5-6
Intermediate Buffering 5-9

Callbacks and Threading

6

OVerview 6-2
Monitoring Progress of Acquisition Tasks 6-3
Event Messaging from Device Drivers 6-3
Polling the Driver for Acquisition Status 6-4
Threading Your Adaptor’s Task Monitoring Methods 6-6
Implementing Callbacks in a Separate Thread 6-6
Implementing Event Messaging in a Separate Thread 6-7
Implementing Polling in a Separate Thread 6-8

Adaptor Kit Interface Reference

Al

OVErVIeW e A-2
ImwDevice A-3
FreeBufferData A4
SetChannelProperty, A4
SetProperty e A-5
Start .. A-6
17 o JE A-7
GetStatus e A-7
ChildChange e A-8
ImwAdaptor A-10
AdaptorInfo A-10
OpenDevice i i A-12
TranslateError A-14
ImwInput A-15
GetSingleValues A-15
PeekData A-15

i gger .o A-17

vi

Contents

ImwOutput A-18

PutSingleValues i A-18
B = = A-18
ImwDIO A-19
ReadValues A-19
WriteValues A-20
SetPortDirections A-21

IPropRoot e B-2
GetRange i B-3
SetRange B-3
GetType ... e B-4
get_DefaultValue B-5
put_DefaultValue B-5
get_IsHidden i B-6
put_IsHidden B-6
get_IsReadonlyRunning B-7
put_IsReadonlyRunning B-8
get_IsReadonly B-9
put_IsReadonly B-9
get_User B-10
PUt_User e B-11
get Name e B-12
put_Name B-12
IsValidValue B-13

IDagEngine B-14

DagEvent e B-15
GetBuffer B-16
GetBufferingConfig B-17
GetTime B-18
PutBuffer B-19
WarningMessagec..iiiiiiiiiie i B-20
PutlnputData B-21
GetOutputData B-22
IDagEnum B-23
AddEnumValues B-23
ClearEnumValues i, B-23
RemoveEnumValue B-24
EnumValues B-25
IDagMappedEnumt B-26
AddMappedEnumValue B-26
FindString e B-27
FindValue B-27
IPropValue i, B-29
get_Value B-29
put_Value e B-30
IPropContainer B-31
CreateProperty i B-32
GetMemberInterface B-34
put_MemberValue B-36
get_MemberValue B-37
IChannel i, B-38
get_PropValue B-38
put_PropValue B-39
UnitsToBinary i B-39
BinaryToUnits B-40

vii

viil Contents

IChannelList B-41

GetChannelContainer B-41
GetChannelStruct B-42
GetNumberOfChannels B-43
CreateChannel (proposed) B-44
DeleteChannel B-44
DeleteAllChannels i, B-45

C

The BUFFER_ST Structure0 . ou... C-3

The NESTABLEPROP Structure C-5

Sample Property and daghwinfo Tables

D |

Table of daghwinfo Properties D-3
Adaptor daghwinfo Table D-3
Analog Input daghwinfo Table D-3
Analog Output daghwinfo Table D-5
Digital I/O daghwinfo Table D-6

Property Info Tables D-7
Analog Input Subsystem Properties D-7
Analog Output Subsystem Properties..................... D-9
Digital I/O Subsystem Properties D-10

Introduction

Overview

Who Should Read This Document?

What Knowledge Is Required?

What Effort Is Required?

Tools . Coe e

Writing an Adaptor Versus Writing a MEX File
What Is the Adaptor Kit?

Toolbox Architecture .

Using This Manual .

1-2
1-2
1-2
1-2
1-3

1-4

1-6

1-9

.1-11

1 Introduction

1-2

Overview

Who Should Read This Document?

You should read this document if you want to

¢ Develop an adaptor to support hardware that is not currently supported by
the Data Acquisition Toolbox

¢ Add new features to an existing adaptor

The Data Acquisition Toolbox Adaptor Kit addresses the needs of individuals
who want to interface the toolbox to a single board, and manufacturers wanting
to interface the toolbox to a range of hardware. Although this document is
aimed primarily at supporting a single board, hardware manufacturers should
use this document as the basis for developing a multiple-board adaptor,
generalizing the single-board support issues appropriately.

What Knowledge Is Required?

To build an adaptor, you should have a working knowledge of

® C++, Microsoft’s Component Object Model (COM), and the Active Template
Library (ATL)

¢ The functionality of your hardware device, and its associated Application
Programming Interface (API)

¢ Data Acquisition Toolbox concepts, functionality, and terminology as
described in the Data Acquisition Toolbox User’s Guide

What Effort Is Required?

The effort required to produce an adaptor depends on the capabilities of the
hardware device and your acquisition requirements.

The simplest type of adaptor supports only single-sample acquisition or burst
acquisition, and uses software clocking. You can create this type of adaptor by
modifying the demo adaptor.

Overview

Note Some hardware does not support single-sample acquisition and, as a
result, it does not support software clocking. In this case, you cannot build this
simple type of adaptor.

The next level of complexity is an adaptor that implements hardware clocking
and buffering, but works only for a limited number of similar hardware devices.
In this case, you can decrease development time by hard-coding some
configuration information or by limiting the hardware features that you use.
For example, you might decide to ignore some triggering functionality.

The greatest level of complexity is an adaptor that provides complete support
to a line of data acquisition devices. To develop an adaptor of this type typically
requires a minimum of four months.

Tools

The example code for the Adaptor Kit was created using Microsoft Visual C++
Version 6, Service Pack 4.

1-3

1 Introduction

Writing an Adaptor Versus Writing a MEX File

To communicate with your hardware, you can develop either an adaptor DLL,
which extends the existing Data Acquisition Toolbox, or you can create a MEX
file.

A MEX file is a shared library (DLL in Windows), which you call from MATLAB®
as if it is an internal MATLAB command or an M-file. It can contain multiple
functions, which are called from MATLAB as parameters added to the MEX file
name. MEX files can be implemented on any platform supported by MATLAB.

You might want to create a MEX file if the supported data acquisition
functionality is simple, for example, single-sample or burst mode acquisition.
You must create a MEX file in these circumstances:

® You want to use a platform not supported by the Data Acquisition Toolbox.
* You want to support features not included in the Data Acquisition Toolbox.
For advanced data acquisition tasks, you should develop an adaptor. This
approach gives you an advantage of having multiple prepackaged features,
such as high-speed storage to disk, multiple triggering modes, including analog

and pretriggering, and a standardized interface to the data acquisition device,
including units conversion.

The table below summarizes the capabilities of adaptor DLLs and MEX files.

Table 1-1: Adaptor DLLs Versus MEX Files

Feature Adaptor DLL MEX File

Supports all MATLAB No Yes

platforms

Counter/timer No Can be implemented

Software triggering Implemented Very difficult to

implementation automatically implement

Software clocking Implemented Very difficult to

implementation automatically implement

Logging to disk Implemented Very difficult to
automatically implement

14

Writing an Adaptor Versus Writing a MEX File

Table 1-1: Adaptor DLLs Versus MEX Files (Continued)

Feature Adaptor DLL MEX File

Integrated into MATLAB Yes No

with MATLAB objects

Callbacks Provided in the Difficult to
toolbox implement

Background (asynchronous) Provided in the Difficult to

and continuous acquisition toolbox implement

1 Introduction

What Is the Adaptor Kit?

The Data Acquisition Toolbox Adaptor Kit consists of three major parts:

e This document

¢ The demo adaptor source code, which is located in the
matlabroot\toolbox\daqg\dagadaptor directory. This directory contains
two subdirectories: AdaptorKit and Demo.

AdaptorKit contains files that are common to all adaptors. Normally you
would place these files in the include subfolder. Demo contains files that are
specific to a particular adaptor — in this case the demo adaptor. The list of
files in both directories is given in the following table.

Table 1-2: Demo Adaptor Source Code

Subfolder File Description

AdaptorKit AdaptorKit.h Contains definitions for non-device-specific classes and
templates that are used for creating all adaptors. The
defined classes provide support for software clocking,
buffering, and triggering.

AdaptorKit.cpp Defines functions for the classes contained in AdaptorKit.h.
Contains GUIDs for the engine. Defines high- and
low-resolution timers using Windows Multimedia methods.

dagmex.idl Interface definition file used to define the COM interfaces of
the data acquisition engine (dagmex).

dagmex.h Built from dagmex.idl by the Microsoft IDL compiler MIDL.

DagmexStructs.h Defines most of the structures used by adaptor DLLs and the
data acquisition engine.

SArrayAccess.h Defines classes and templates used for creating and
managing safe arrays and vectors.

1-6

What Is the Adaptor Kite

Table 1-2: Demo Adaptor Source Code (Continued)

Subfolder File Description
Demo demo.dsp Project file for building the demo adaptor.
demo.def Definition file for building demo.d11.
demo.cpp Defines the entry point into demo.d11.
demo.rc Resource script file generated by the Microsoft Developer
Studio.
demo.idl Interface definition file for the demo adaptor. All demo
adaptor-specific interfaces are defined here.
resource.h File is generated by the Microsoft Developer Studio.
Contains definitions for constants used by the demo adaptor
program.
demoin.h Defines the class Cdemoin, which implements the analog

demoin.cpp

demoadapt.h

demoadapt.cpp

StdAfx.h

StdAfx.cpp

input interface ImwInput. This interface provides for
software clocking.

Defines functions for the Cdemoin class, which is defined in
demoin.h.

Defines the class Cdemoadapt, which implements the
interface ImwDemoadapt. This interface declares methods
that are common to the entire adaptor.

Defines functions for the Cdemoadapt class, which is defined
in demoadapt.h.

Defines some directions for the compiler, and internally
includes standard system header files.

Internally includes standard system headers. Both
StdAfx.cpp and StdAfx.h provide better organization of the
header sections of the files in the project.

® The full source code for the adaptor DLLs included with the Data Acquisition
Toolbox. All source code files are located in the folder

1-7

1 Introduction

MATLABROOT/toolbox/daq/daq/src, which contains the subfolders listed
below.

Table 1-3: Data Acquisition Toolbox Adaptor Source Files

Folder Name

Description

computerboards

hpe1432

mwnidaq

winsound

keithley

include

Contains full source code for building the adaptor DLL for ComputerBoards
(Measurement Computing Corp.) devices. The adaptor name is cbi and the
adaptor DLL name is mwcbi.d1l.

Contains full source code for building the adaptor DLL for the Agilent
Technologies E1432/33/34 devices. The adaptor name is hpe1432 and the
adaptor DLL name is mwhpe1432.d11.

Contains full source code for building the adaptor DLL for National
Instruments devices supported by the NI-DAQ driver. The adaptor name is
nidaq and the adaptor DLL name is mwnidaq.d1l.

Contains full source code for building the adaptor DLL for the generic sound
card, which uses the Windows Waveform Audio driver. The adaptor name is
winsound and the adaptor DLL name is mwwinsound.d11.

Contains full source code for building the adaptor DLL for Keithley
Instruments devices. The adaptor name is keithley and the adaptor DLL
name is mwkeithley.d1ll.

Contains common files for building all adaptor DLLs. This folder is
practically identical to the folder AdaptorKit, included in the demo adaptor
source. However, it includes these three additional files:

® dagtbxver.h — Version control file

® thread.h — Contains definitions of the thread class and classes necessary
to spawn and maintain safe threads (such as mutex, semaphore)

e cirbuf.h — Defines a class that implements a circular buffer

1-8

Toolbox Architecture

Toolbox Architecture

The Data Acquisition Toolbox consists of these components:

® M-files
M-files contain MATLAB commands that allow you to connect to and
communicate with your hardware. For example, you use the analoginput
M-file to create a MATLAB object associated with your analog input
subsystem. The M-files are located in the MATLABROOT/toolbox/daq/daq
folder.

¢ The data acquisition engine

The data acquisition engine contains functions that handle data acquisition
objects and manage their properties. The engine also provides support for
buffering and for managing acquired and output data.

¢ Adaptors

An adaptor is a DLL that interacts directly with the vendor-supplied
hardware device driver. The adaptor communicates with the device driver
via the vendor’s API. Normally the API functions are contained in a DLL
that supplements the device driver.
The flow of information between toolbox components is shown below. The COM
interface exists between the data acquisition engine and the adaptor DLL.

Figure 1-1: Flow of Information Between Toolbox Components

M-files (MATLAB commands)

Data acquisition engine (MEX file)

COM interface

Adaptor DLL

Vendor interface

Hardware

1-9

1 Introduction

1-10

The relationship between the data acquisition engine and an adaptor DLL is
implemented as a Component Object Model (COM) interface. The
communication is always initiated by the engine when the data acquisition
object is first created.

Thus, you can apply a client-server architecture model to this interface with
the engine as a client and the adaptor as a server. However, when the data
acquisition object is initialized, the engine sends a pointer to its main interface
to the adaptor. This allows the adaptor to probe for all engine COM interfaces
and methods via the QueryInterface function. The adaptor itself obtains the
pointer to the engine class, based on the main interface. This enables it to call
the necessary methods from the engine and use them in the acquisition
process. This approach allows for version maintenance on both the engine and
the adaptor sides. Additionally, it enables you to create adaptors as EXE files
rather than DLL files, and provides for remote communication between the
engine and adaptors.

The COM interface between the engine and the adaptor is described in detail
in this document. To facilitate your understanding of these interfaces, the
adaptor source code is provided as part of the Adaptor Kit.

Since these interfaces are based on COM, the data types you use while writing
adaptors must conform to COM standards. Many of the data types found in C
are supported, such as long and double. Other data types, such as BSTR and
VARIANT, are also commonly used in COM-based applications. These data
types are documented in many texts and in Microsoft’s online documentation.
Wrapper classes such as variant_t and bstr_t, and the ATL counterparts
CComVariant and CComBSTR make using these data types much easier.
These classes are documented by Microsoft as well.

Using This Manual

Using This Manual

The Adaptor Kit User’s Guide provides instructions and information required
to implement an adaptor in C++. As such, it is not a conventional MATLAB
Toolbox User’s Guide, and you should not expect to find a layout similar to a
MATLAB Toolbox User’s Guide.

The layout of this document is intended to provide sufficient information for

® First-time adaptor implementors, who need to read all chapters in the guide
carefully, and might need to refer to the Appendices for additional
information on engine and adaptor kit interfaces and data structures.

® Experienced adaptor implementors, who need a checklist of things to do
when implementing an adaptor. These implementors would use the Adaptor
Kit as a reference guide rather than as a recipe of implementation steps.

In either case, you need to understand how the Adaptor Kit User’s Guide is laid
out, in order to make most effective use of the information in this Guide.

Chapter 1, “Introduction,” provides an overview of the Adaptor Kit, the Toolbox
architecture, and the Adaptor Kit files. You should read this chapter to gain an
insight into how the Adaptor fits into the Data Acquisition Toolbox
architecture.

Chapter 2 provides a tutorial that explains the relationship between a
MATLAB user’s interaction with the Data Acquisition Toolbox and the
adaptor. First-time users should read this document in order to understand
how and when the adaptor is called.

The main reference for all adaptor implementors should be Chapter 3,
“Step-by-Step Instructions for Adaptor Creation.” Both experienced and novice
adaptor implementors should use the step-by-step guide when implementing
new adaptors or modifying existing adaptors. The chapter is written to allow
for easy implementation guidelines, and does not contain all the information
required to implement a successful adaptor. Where relevant, information on
implementation details has been left for a later chapter, and referenced in
Chapter 3.

Chapter 4, “Working with Properties,” explains how to implement code that
allows you to query and modify adaptor properties. This chapter should be used
as an implementation reference for the steps listed in Chapter 3.

1-11

1 Introduction

1-12

Chapter 5, “Buffering Techniques,” explains how the engine manages buffering
of data for continuous acquisition tasks. You should only need the information
in this chapter if you plan on implementing hardware-clocked acquisition in
your adaptor.

Chapter 6, “Callbacks and Threading,” provides some implementation
techniques for handling callbacks from hardware device drivers in your
adaptor. This chapter, together with Chapter 5, forms the basis for
implementing hardware-clocked acquisition in your adaptor. For
software-clocked adaptors, the information is not required.

Finally, experienced adaptor implementors wanting to understand the basic
COM Interfaces defined by the Data Acquisition Toolbox and the Adaptor Kit
should refer to the Appendices, which contain references for the interfaces and
for structures defined by the engine.

Tutorial

Overview

A Basic View of Toolbox-Engine-Adaptor Relationships .

Example: an Analog Input Session .
Example: an Analog Output Session

Example: a Digital I/O Session .

2-2
2-2

2-3

2-8

. 2-10

2 Tutorial

2-2

Overview

This chapter explains, by way of an example data acquisition session, how a
typical user interacts with the Data Acquisition Toolbox, and how those user
commands are handled by the engine and the adaptor. The examples include

® An analog input session
¢ An analog output session
¢ A digital I/0 session

This chapter provides an understanding of how user commands are interpreted
by the adaptor. However, no actual C code is presented in this chapter; the
implementation details are deferred to Chapter 3, “Step-by-Step Instructions
for Adaptor Creation.”

A Basic View of Toolbox-Engine-Adaptor
Relationships

As discussed in “Toolbox Architecture” in Chapter 1, the Data Acquisition
Toolbox consists of M-files, the data acquisition engine, and adaptors. Each of
these components is used in a typical data acquisition session; although the
user only interfaces to the hardware through MATLAB code, the MATLAB
code uses the engine to create and manage the required data acquisition object,
and the engine uses the adaptor to control hardware and those properties’
changes that are deemed to be important to the adaptor. These relationships
are shown graphically below.

§ Adaptor Object

5] ~

g AI Object [AO Object |DIO Object
Modify/Control Create

DAQ Engine

MATLAB

Example: an Analog Input Session

Example: an Analog Input Session

A typical toolbox session using an analog input object is shown.

ai = analoginput('winsound');
set(ai, 'SampleRate',11025)

set(ai, 'Tag', 'WinsoundObject')
addchannel(ai,1);

set(ai.Channel, 'InputRange',[-.5 .5])
start(ai)

waittilstop(ai, 5);

data = getdata(ai);
delete(ai.Channel(1))

delete(ai)

Each command is described below.

Creating an Analog Input Object

The following command creates an analog input object associated with a sound
card.

ai = analoginput('winsound');

The analoginput M-file calls the data acquisition engine to construct the
analoginput object. When the constructor is first called, the engine must
determine what COM object to create. It does this by enumerating all class IDs
of objects that implement CATID {6FE55F7B-AF1A-11D3-A536-
00902757EA8D} (MATLAB Data Acquisition Adaptor), and then asks for the
short name of that GUID. In this case, the engine matches the short name to
the winsound adaptor. The engine then constructs an mwAdaptor object and
calls the object’s OpenDevice method for creating the analog input object.

The adaptor’s OpenDevice method is responsible for creating a new device and
initializing it. Typically, this is done by creating a new COM object that
implements the appropriate interfaces. After creating the new object, the
engine interface can then be used to identify the characteristics of the current
driver or device to the MATLAB user. You can also create device-specific
properties at this time. The adaptor can also register an interest in some
properties by setting the User value of the property. This value serves two
purposes: Any value other than 0 causes the engine to call the SetProperty

2 Tutorial

method when the property is changed, and the value can be used in the
SetProperty method to identify the property being modified.

The Open method creates any device-specific properties and defines any
device-specific values for existing properties. For example, the winsound
adaptor has two device-specific properties: BitsPerSample and
StandardSampleRates. Both these properties are created with the
CreateProperty method of the IPropContainer interface. When the property
is created, a pointer to the IProp interface for the property just created is
returned that allows you to call IProp methods. The IProp methods allow you
to configure your property. For example, the IProp interface contains methods
that allow you to display the possible settings of the property, the default value
of the property, and the current value of the property.

Configuring the Sampling Rate

The following command configures the sound card to a sampling rate of 11.025
kHz.

set(ai, 'SampleRate',11025)

The set M-file calls the data acquisition engine. In the Open method the
adaptor requested a notify on change for the SampleRate property, and so the
engine notifies the adaptor when you set the property to a new value. The data
acquisition engine calls the adaptor’s SetProperty method with two input
arguments. The first input argument is a pointer to the IProp interface for the
property being set. The second input argument is the value that the property
is being set to. Therefore, in this example, the first input argument is a pointer
to the SampleRate IProp interface, and the second input argument contains a
pointer to 11025.

From within the adaptor’s SetProperty method, you can determine which
property is being set by examining the user value passed into the function. This
value can be compared to the values for each property that you have registered
with the engine.

Configuring the Object Tag

The following command configures the analog input object’s Tag property to the
string WinsoundObject.

set(ai, 'Tag', 'WinsoundObject');

2-4

Example: an Analog Input Session

The set M-file calls the data acquisition engine. The Tag property was not
registered by the adaptor. Therefore, when you configure the property, the
engine modifies the value and does not notify the adaptor of the change.

Adding Channels to the Analog Input Object

The following command adds one channel to the analog input object ai.

addchannel(ai,1);

The addchannel M-file calls the data acquisition engine. The engine then calls
the adaptor’s ChildChange method. This gives the adaptor the opportunity to
initialize the hardware and do any error checking for the channel that is added.

Configuring the Channel’s Input Range

The following command configures the channel’s InputRange property to
accept voltages between -5 and 5 volts.

set(ai.Channel, 'InputRange',[-.5 .5]1);

The set M-file calls the data acquisition engine. The engine then calls the
adaptor, because the InputRange property was registered with the engine
(within the adaptor's Open method). The data acquisition engine calls the
adaptor's SetChannelProperty method. SetChannelProperty takes four input
arguments. The first input argument is a pointer to the IProp interface for the
channel property being modified. The second input argument is a pointer to the
IPropContainer interface for the channel being modified. The third input
argument contains a pointer to the NESTABLEPROP structure, which is described
in Appendix C, “Engine Structures.” The last input argument contains the new
property value.

Note The InputRange property is typically a combination of the hardware
device’s input range and the gain for a channel. For example, a hardware
input range of +/- 5 V with four gain settings of 1, 2, 5, and 10 results in
possible InputRange values of [-5 5], [-2.5 2.5],[-1 1],and [-0.5 0.5].

Starting the Analog Input Object

The following command starts the analog input object.

2-5

2 Tutorial

2-6

start(ai);
waittilstop(ai, 5);

The start M-file calls the data acquisition engine. The engine then calls the
adaptor’s Start method.

The Start method is responsible for initializing any routines necessary for
acquiring data from the hardware. Because triggering is by default immediate,
the engine then calls the adaptor’s Trigger method, which starts the
acquisition. The adaptor must then run in the background using callbacks or a
separate thread. The buffers of data are transferred between the adaptor and
the data acquisition engine with the GetBuffer and PutBuffer methods of the
IDagEngine interface. The adaptor uses the GetBuffer method to obtain an
empty buffer from the data acquisition engine. When the buffer is filled with
data acquired from the hardware, the adaptor returns the buffer to the data
acquisition engine with the PutBuffer method.

When the number of samples requested has been returned from the adaptor to
the data acquisition engine, the engine calls the adaptor's Stop method.

The waittilstop M-file waits until the specified object has stopped, or a
particular time has passed (in this case, 5 seconds). The engine knows that the
adaptor has stopped when it receives a Stop Event notification from the
adaptor.

Extracting Data from the Engine
The following command extracts all the data from the engine and stores it in
the MATLAB variable data.

data = getdata(ai);

The getdata M-file calls the data acquisition engine, which returns the data
buffered in the engine to the specified MATLAB variable. If the number of
samples requested by getdata is not available, the engine blocks until the
adaptor returns the number of samples requested, or errors if the time
specified by TimeOut elapses.

Deleting a Channel
The following command deletes the channel from the analog input object.

delete(ai.Channel(1))

Example: an Analog Input Session

The delete M-file calls the data acquisition engine, which in turn calls the
adaptor’s ChildChange method.

Deleting an Analog Input Object

The following command deletes the channel from the analog input object.

delete(ai)

The delete M-file calls the data acquisition engine, which calls the adaptor’s
destructor method. This should stop the device (call the Stop method), if the
device was running, and close the hardware.

2-7

2 Tutorial

Example: an Analog Output Session

A typical toolbox session using an analog output object is shown.

ao = analogoutput('winsound');
set(ao, 'SampleRate’',11025)

set(ao, 'Tag', 'WinsoundObject')
addchannel(ao,1);

set(ao.Channel, 'OutputRange',[-.5 .5])
data = sin(linspace(0,2*pi,8000));
putdata(ao,data')

start(ao)

waittilstop(ao, 2);
delete(ao.Channel(1))

delete(ao)

The analgoutput, set, and addchannel commands are not described here
because they are functionally identical to the analog input commands
described in “Example: an Analog Input Session” on page 2-3. The
sin(linspace()) command is not described because it is handled entirely
within MATLAB. All other commands are described below.

Queuing Data in the Engine
The following command queues data in the engine.

putdata(ao,data')

The putdata M-file calls the data acquisition engine, and the data is converted
to the native data type and stored within the engine for output to the hardware.

Starting the Analog Output Object

The following command starts the analog output object.

start(ao)

The start M-file calls the data acquisition engine, which in turn calls the
adaptor's Start method.

The Start method is responsible for initializing any routines necessary for
outputting data that has been queued in the data acquisition. It often primes
the output with data before the trigger function is called. The engine then calls
the Trigger function, at which point the hardware should be started. The

2-8

Example: an Analog Output Session

buffers of data are transferred between the adaptor and the data acquisition
engine with the GetBuffer and PutBuffer methods of the IDagEngine
interface. The adaptor requests a buffer of data to be output from the data
acquisition engine with the GetBuffer method. When the data buffer has been
output to the hardware, the adaptor returns the empty buffer to the data
acquisition engine with the PutBuffer method.

For analog output objects, the adaptor must determine when the last buffer of
data is available for being output, call its own Stop method, and post a Stop
event to the object’s EventLog property. The last buffer can be detected with the
Flags field of the BUFFER_ST structure. The last buffer can also be detected if
the buffer obtained by the GetBuffer method of the IDagEngine interface is
null. An event can be posted with the IDagEngine's DagEvent method.

Deleting a Channel

The following command deletes the channel from the analog output object.
delete(ao.Channel(1))

The delete M-file function calls the data acquisition engine. The engine then

calls the adaptor’s ChildChange method. The adaptor configures the hardware

and performs any necessary error checking for the channel that is being
deleted.

Deleting an Analog Output Object

The following command deletes the analog output object.

delete(ao)

The delete M-file calls the data acquisition engine. The engine then calls the
adaptor’s destructor method. This should stop the device (call the Stop method)
and close the hardware.

2-9

2 Tutorial

Example: a Digital 1/O Session

A typical toolbox session using a digital I/O object is shown.

dio = digitalio('nidaq',1);
lin = addline(dio,0:3,'in");
lout = addline(dio,4:7,'out');
p = addline(dio,0:7,1,'in");
data = getvalue(lin);
putvalue(lout,5)

data2 = getvalue(dio);
delete(dio)

Each command is described below.

Creating a Digital 1/O Object

The following command creates the DIO object dio associated with a National
Instruments board.

dio = digitalio('nidaq',1);

A digital I/O (DIO) device need not implement all the interfaces that are
required for an analog input or analog output device. When the device is
opened, it must fill in the portdirections, portids, portlineconfig, and
portlinemask properties with the correct values. Given these values, the
engine maintains the line information and generates the correct calls to
SetPortDirection, ReadvValues, and WriteValues. The standard property and
child (line) property methods are supported. However, the adaptors
implemented so far have not needed to use them.

The object should initialize its properties to the correct values before returning.
For a DIO object, the daghwinfo property structure must initialize values for
portdirections, portids, portlineconfig, and portlinemasks.

Adding Lines to the Digital I/O Object

The following command adds four input lines from the default port (port 0) to
the DIO object dio.

lin = addline(dio,0:3,'in");

The addline command works the same as the addchannel command for Al and
AO objects in that the adaptor’s ChildChange method is called. However, most

2-10

Example: a Digital I/O Session

adaptors need not implement ChildChange, because typically no adaptor
actions are necessary when adding or removing lines.

The following command adds four output lines to the DIO object dio.
lout = addline(dio,4:7,'out');
After the lines are added, a call to SetPortDirection(0,0xf0) is made to set

the port direction to output.

The following command demonstrates that you can also add lines in reverse
order.

p = addline(dio,7:-1:0,1,'in');

Reading Line Values

The following command reads the values from lines 0 to 3 of port 0 and stores
the values in the MATLAB variable data.

data = getvalue(lin);
The engine issues the command ReadValues(1,PortList,Data) to the device,
which must then return the values from the specified ports. The adaptor does

not keep track of exactly what lines have been added, and returns all line
values in Data.

Writing Line Values

The following command writes the value 5 to lines 4 through 7 (the four most
significant bits) of port 0.

putvalue(lout,5);

The write is performed by calling WriteValues(1,PortList,Data,Mask)
where Portlist, Data, and Mask are pointers to an array. Portlist points to 0,
Data points to 0x50, and Mask points to 0xf0.

The following three commands illustrate alternative ways to write the value 5
to port O:

putvalue(lout,[1,0,1,0])
putvalue(dio.lines(8:-1:5),10);

putvalue(lout(4:-1:1),[0,1,0,1])

2-11

2 Tutorial

Reading Line Values
The following command reads the values from all currently configured lines:

data2 = getvalue(dio);
The read is performed by calling Readvalues(2,PortList,Data).
Deleting a Digital 1/O Object
The following command deletes the channel from the digital I/O object:
delete(dio);

It is up to the implementation to decide what state any output lines are left in.
The engine releases its reference to the mwDevice object and then releases its
reference to the mwAdaptor object.

Note The engine implements a pseudo line system and caches the values
written to output lines. It also takes care of reordering the lines (and data) for
the user.

2-12

Step-by-Step Instructions
for Adaptor Creation

Overview: Building the Adaptor 3-2
Toolbox Adaptors 3-3
About the Demo Adaptor Software 3-7
Stage 1 Select Supported Features 3-9
Stage 2 Create the Adaptor Project and Adaptor Class 3-12
Stage 3 Implement the Analog Input Subsystem 3-18
Stage 4 Implement the Analog Output Subsystem 3-46
Stage 5 Implement the Digital I/O Subsystem 3-54

3 Step-by-Step Instructions for Adaptor Creation

3-2

Overview: Building the Adaptor

This chapter provides step-by-step instructions for building an adaptor for your
hardware. Starting with the demo adaptor provided with the Data Acquisition
Toolbox, you can develop a complete adaptor, implementing all the
functionality available in the Data Acquisition Toolbox for your hardware,
using these instructions.

In this chapter, you learn how to build the adaptor by following these stages:

1 Choose the features of the Data Acquisition Toolbox the adaptor will
implement.

2 Create the Adaptor project and Adaptor class, based on the demo adaptor
supplied by The MathWorks.

3 Implement the Analog Input object code (if required).
4 Implement the Analog Output object code (if required).

5 Implement the Digital I/O object code (if required).

For each of the stages, the specific actions required to complete that stage are
discussed in this chapter. The stages have been designed so that testing can
take place often, and changes are typically restricted to a few files and methods
within one class.

Note Although this chapter discusses the steps required to implement each
stage, details of how to interact with properties, deal with buffers, and handle
event messaging are documented in later chapters. Refer to those chapters as
necessary.

The stages of development rely heavily on the demo adaptor source code
provided with the Adaptor Kit. In many instances, this document also refers to
existing adaptors supplied with the Data Acquisition Toolbox. Refer to the code
for these adaptors where necessary.

Toolbox Adaptors

Toolbox Adaptors

The technologies used in the adaptors shipped with the Data Acquisition
Toolbox have been presented in this document as approaches for implementing
your own adaptor. Each adaptor provides a unique combination of the
implementation approaches presented in this manual. The following sections
explain how each adaptor has been implemented. The code for each adaptor is
in a subdirectory of the Data Acquisition Toolbox. You can find the source code
in the $SMATLABROOT\toolbox\daqg\daq\src directory.

The winsound Adaptor

The winsound adaptor is used to communicate with Windows-compatible sound
cards. The adaptor uses the Windows multimedia drivers and buffers acquired
data using multibuffering with direct callback threads.

This adaptor is the most basic of all the adaptors. However, because of the
power of the Windows multimedia device interface, it uses an efficient
acquisition method: This adaptor uses a linked list of buffers to acquire or
output data. The multimedia device is capable of filling (or emptying) these
buffers in the order that they are passed to the device. A thread is created to
feed buffers to the device from the engine, and to take the filled buffers from
the device and return them to the engine. The thread is paced with an event
generated by the device driver each time a buffer is filled. This driver also
supports variable data types.

Note This adaptor was written prior to complete implementation of the
current Adaptor Kit. Although the concepts used in the adaptor are similar to
those presented here, you will find that some of the actual implementation of
code is more low-level than the ideas presented in this document.

The cbi Adaptor

The cbi adaptor is used to communicate with ComputerBoards devices
(ComputerBoards are now called Measurement Computing, but the adaptor is
referred to in this document as the ComputerBoards adaptor). The adaptor
uses the Universal Library drivers, and buffers acquired data using circular
buffers with timer callbacks. It also implements software clocking.

3-3

3 Step-by-Step Instructions for Adaptor Creation

3-4

The ComputerBoards adaptor has two unique features: First, because the
Universal Library does not support callbacks, this adaptor uses a timer to poll
the current acquisition. It does this by using the Windows multimedia timer
callback. The current transfer location is obtained from the Universal Library,
and the appropriate amount of data is then copied into or out of the circular
buffer. One disadvantage of this method is that there is no hardware guarantee
or protection for an overrun or an underrun condition. The adaptor tries to pick
a buffer size and a timer callback rate such that an overrun is unlikely, but
there is still the possibility that data can be lost.

The second unique feature of this adaptor is the support for software clocking.
Because some ComputerBoards devices do not have an onboard clock, this
adaptor implements a software clock based on the Windows multimedia timer.

Note The ComputerBoards adaptor makes extensive use of many of the
Adaptor Kit macros used in this document. However, the ComputerBoards
adaptor does not implement the adaptor object separately from the analog
input class, so you should not use the entire adaptor as a template for creating
your own.

The nidaq Adaptor

The nidaq adaptor is used to communicate with National Instruments devices.
The adaptor uses the NI-DAQ driver, and buffers acquired data using circular
buffers with direct callbacks.

The NI-DAQ adaptor is one of the more extensive adaptors because of its
implementation of advanced triggering modes and the number of hardware
devices supported. It works by acquiring data to or from a circular buffer using
NI-DAQ’s callback and copy functions. A circular buffer is used because it is the
buffering mode supported by the NI-DAQ software. Many advanced triggering
modes are also supported by this adaptor. When the number of samples is
known and is sufficiently small, a burst acquisition is performed instead of
using continuous acquisition.

Toolbox Adaptors

Note This adaptor was written prior to complete implementation of the
current Adaptor Kit. Although the concepts used in the adaptor are similar to
those presented here, you will find that some of the actual implementation of
code is more low-level than the ideas presented in this document.

The hpe1432 Adaptor

You use the hpe1432 adaptor to communicate with Agilent Technologies
E1432/33/34 devices. The adaptor uses the VXIplug&play driver, and buffers
acquired data using ping-pong buffers with callbacks.

For input data, the adaptor uses an unknown buffering method that is internal
to the VXIplug&play driver, and a callback to notify the adaptor when data is
available. In the callback function, a buffer of data is retrieved from the driver
and returned to the engine. For output data, the adaptor uses two buffers and
a vendor-supplied callback to send the data. The buffer size is defined by the
driver to have a maximum of 4096 values. Therefore, to simplify the copy
process, the adaptor limits the engine to this maximum buffer size. It also
supports more than 16 bit data output.

Note This adaptor was written prior to complete implementation of the
current Adaptor Kit. Although the concepts used in the adaptor are similar to
those presented here, you will find that some of the actual implementation of
code is more low-level than the ideas presented in this document.

The keithley Adaptor

You use the keithley adaptor to communicate with Keithley Instruments
devices. The adaptor uses the DriverLINX set of drivers, and implements direct
engine-driver buffer transfers using window messaging.

The Keithley adaptor supports a wide range of Keithley Instruments boards.
Because each board series uses a different device driver, the adaptor opens all
available DriverLINX drivers at initialization, and closes them when the
adaptor is destroyed. The adaptor can switch between software-clocked and
hardware-clocked acquisition as required.

3-5

3 Step-by-Step Instructions for Adaptor Creation

3-6

A unique feature of the Keithley adaptor is the implementation of Window
message handling to monitor task progress. The adaptor uses a single message
window for all DriverLINX messaging, passing the message to the appropriate
subsystem as required. However, due to the implementation of the Driver LINX
drivers, the message window thread has to open all DriverLINX drivers in
order to receive any messages from those DLLs. Hence, two instances of
DriverLINX are open at any one time per driver installed on the machine.

The direct engine-adaptor buffering places some limitations on the minimum
size of the engine buffers. This is not enforced, but is rather communicated to
the user through warning messages when appropriate.

Note The Keithley adaptor has been implemented based solely on the
current Adaptor Kit ideas. You should refer to the Keithley adaptor for code
examples where possible.

About the Demo Adaptor Software

About the Demo Adaptor Software

The demo adaptor does not communicate with any actual hardware. Instead it
simulates data acquisition in order to demonstrate the basic functionality
common to most adaptors.

Features
The demo adaptor supports these features:

¢ Buffered acquisition
® Manual, software, and auto triggering
® Single-sample acquisition

® Saving (retrieving) collected data to (from) a MATLAB internal array

Limitations
The demo adaptor has these limitations:

¢ It works only with simulated data. The data is stored in the buffer
immediately after you open the device. This same buffer is reused whenever
data is required.

It only supports software clocking. Note that the maximum software-clocked
sampling rate is 500 samples per second. Therefore, any adaptor you build
that uses software clocking includes this limitation. To achieve higher
sampling rates, you must use your hardware’s onboard timer. However,
supporting an onboard timer requires an entirely different software design,
which is described later in this guide.

Modifying the Demo Adaptor

Modification of the demo adaptor takes place in each of the stages defined in
this chapter. Although you could simply modify the code from the demo adaptor
and create an adaptor named “demo” by building that modified adaptor code,
this chapter leads you through the process of creating your own project and
importing components of the demo adaptor into that project one at a time. In
this way, you can test modifications and restrict problems to a single file in the
project, which makes implementation quicker and easier to deal with.

The demo adaptor code contains many

3-7

3 Step-by-Step Instructions for Adaptor Creation

// TODO

// END TODO

comment segments. These segments of comment code should be used in
conjunction with the steps outlined in this chapter, in order to produce a
successful adaptor with minimal trouble.

3-8

About the Demo Adaptor Software

Stage 1

Select Supported Features

The first stage of writing your adaptor is deciding which features of the Data
Acquisition Toolbox to support. Your decisions should be based on

¢ Hardware capabilities: Can the hardware provide the specified feature?

® Driver knowledge: Does the software driver support the required
programming requirements?

® Available time: Some aspects of implementation can be completed relatively
quickly, while others require more programming and testing time.

In general, these decisions are driven by the first two points, and only rarely
by the last.

The following questions provide an implementation roadmap for you to follow.
The questions provide a hierarchy of implementation possibilities based on
implementation complexity; as the list continues (for each subsystem) the
implementation becomes more complex. Each successive point is also inclusive:
to implement that point requires implementation of each previous point.

1 Will the adaptor support analog input?
a Single-value transfers only?

b Buffered transfers (logging to memory and/or disk) using software
clocking?

¢ Hardware-clocked buffered transfers?

d Hardware triggering and/or gated acquisition?
2 Will the adaptor support analog output?

a Single-value transfers only?

b Buffered transfers (logging to memory and/or disk) using software
clocking?

¢ Hardware-clocked buffered transfers?
d Hardware triggering and/or gated acquisition?

3 Will the adaptor support digital I/O?
a Will any digital ports be configurable for write/read?

3-9

3 Step-by-Step Instructions for Adaptor Creation

3-10

b Will any digital lines be configurable for write/read?

Based on the questions posed above, a roadmap to implementation can be
identified. This roadmap is presented in the following table as methods that
must be implemented for each of the steps defined above.

Table 3-1: Classes and Methods to Be Implemented in the Adaptor

Question Class/Methods to Implement

1) Analog Input AnalogInput class (derived from ImwDevice and ImwInput)
Open, SetDagHwInfo methods.

1a) Single-value A/D GetSingleValue and/or GetSingleValues methods.

1b) Software-clocked No additional methods are required, but the adaptor must call

acquisition EnableSwClocking to set up correct sample rates.

1c) Hardware-clocked
acquisition

1d) Hardware
triggering or gated
acquisition

2) Analog Output

2a) Single-value D/A

2b) Software-clocked
transfer

2¢) Hardware-clocked
transfer

2d) Hardware
triggering or gated
transfers

Start, Trigger, Stop methods, and probably SetProperty,
ChildChange, and SetChannelProperty methods, as well as a message
handler.

Modify Start, Trigger, and Stop methods, as well as property change
methods.

AnalogOutput class (derived from ImwDevice and ImwOutput)
Open, SetDagHwInfo methods.

PutSingleValue and/or PutSingleValues methods.

No additional methods are required, but the adaptor must call
EnableSwClocking to set up correct sample rates.

Start, Trigger, Stop methods, and probably SetProperty,
ChildChange, and SetChannelProperty methods; message handler.

Modify Start, Trigger, and Stop methods, as well as property change
methods.

About the Demo Adaptor Software

Table 3-1: Classes and Methods to Be Implemented in the Adaptor (Continued)

Question

Class/Methods to Implement

3) Digital /O

DigitalIO class (derived from ImwDevice and ImwDIO)
Open, SetDagHwInfo, WriteValues, ReadValues methods.

3a) Port-configurable SetPortDirection method, trapping Directionvalue of 0 (Input) or

1/0

oxff (Output).

3b) Line-configurable SetPortDirection method, with variable DirectionValue settings.

I/0

Stages 2 through 4 discuss how to implement each of these methods.

By the end of Stage 1, you will have a roadmap defining how you will
implement your adaptor. Refer also to Appendix A, “Adaptor Kit Interface
Reference,” and Appendix B, “Engine Interface Reference,” for information on
the methods that all adaptors should implement (and which methods are
implemented in the Adaptor Kit).

Limitations of Software-Clocked Adaptors

One of the most important implementation issues is whether to support
hardware clocking in your adaptor. As long as you use the Adaptor Kit code,
software clocking is already implemented for your adaptor, and requires
minimal effort, as outlined in the section above. However, software clocking
has some limitations which might be too severe for your application:

¢ The maximum sample rate for any acquisition task is 500 Hz, regardless of
the board’s published sampling rate and your computer’s processor speed.

® You cannot use any hardware triggering without rewriting substantial
portions of the adaptor code.

If you are able to achieve your desired objective within these limitations, then
you should not use anything other than software clocking. A complete adaptor,
however, should use the full features of the hardware for which the adaptor has
been written, and should implement hardware clocking.

3-11

3 Step-by-Step Instructions for Adaptor Creation

3-12

Stage 2

Create the Adaptor Project and Adaptor Class

Once you have selected the required implementation details, you can create the
adaptor project. Use of a suitable compiler and IDE is required for this task.
This chapter assumes the use of Microsoft Visual Studio 6, Service Pack 4.

Although you are starting a new Microsoft Visual Studio project, you will make
extensive use of the demo adaptor code shipped with the Adaptor Kit by
importing that code into your project and modifying it. The benefit of starting
a new project is that modifications to the existing demo adaptor code are more
manageable. Adding the demo adaptor code initializes all Data Acquisition
Toolbox Engine interfaces, and creates shell classes and methods for
implementation of the custom-written adaptor.

The following sections describe how to implement this stage by completing the
following steps:

1 Choose a suitable name for your adaptor.
2 Create the Microsoft Visual Studio project.

3 Add the demo adaptor code to that project (including renaming the demo
files).

4 Test the adaptor with MATLAB.

In Stages 3 to 5, you will implement each of the subsystems of the adaptor.

Step 2.1 Adaptor and Project Naming

Before creating the adaptor, you should select a suitable name. In many cases,
the name would be the name of the data acquisition board manufacturer or
model. For example, if you are creating a board manufactured by “XYZ
Instruments” a suitable name is “xyz”. The name should not begin with
numbers, and should be sufficiently unique and representative of the
capabilities of the adaptor (if you are writing for a particular board, say the
“ad123”, you should name your adaptor after that board, i.e., “xyzad123”).

You should use all lowercase for the adaptor name, to conform to conventions
used on existing adaptors.

This adaptor kit provides examples based on a chosen adaptor name of “xyz”.

About the Demo Adaptor Software

Note Do not use the word “adaptor” in your project name, as the project
name is used extensively in the COM object naming! Otherwise a user would
have to create an adaptor by referring to it as the “xyzadaptor” instead of just
by the board name, “xyz”.

Once you have named the adaptor, you can create the adaptor project by
starting a new project using the “ATL Com AppWizard”. You should not need
to use MFC, as all interaction with the adaptor takes place through MATLAB
and not other windows (the only exception is when you are creating adaptors
that use MFC, for example, the winsound adaptor).

All adaptors created to date are in-process servers. For the AppWizard, this
means selecting “Dynamic Link Library” as the server type. Use of out of
process servers has not been tested, and is likely to be more difficult, although
not impossible.

The created project forms the shell of the adaptor.

Step 2.2 Add Include, Link, and MIDL Directories to
Your Project

To successfully compile the adaptor code, you must add the
SMATLAB\Toolbox\daqg\dagadaptor\AdaptorKit directory to the following
include paths ($MATLAB refers to the directory in which MATLAB is installed):

® To the “Additional include directories” option of the C/C++ Preprocessor
definitions panel.

® To the “Additional resource include directories” option of the Resources
panel.

® To the “Additional include directories” option of the MIDL panel.

Next you must add the Adaptorkit.cpp file to your project. You also need to
modify the StdAFX. h file to include the adaptor kit header file adaptorkit.h.

You need to enable exception handling in your project. Select Project Settings
and select “All Configurations”. In the C/C++ tab, select “C/C++ Language” and
select the Enable exception handling box.

3-13

3 Step-by-Step Instructions for Adaptor Creation

3-14

Step 2.3 Define Adaptor Classes in the IDL File

The IDL file contains a definition of all COM interfaces defined in the project.
In this stage, you add the adaptor interfaces to the project, and the IDL file.

You should complete the following tasks in this stage (consult the demo
adaptor IDL file demo. id1 for more information):

¢ Add a line to import the dagmex. id1 file.

¢ Copy the implementation of the demoadapt class into your IDL file. The
specific lines to copy are given below:
[
uuid(CE932327-3BD9-11D4-A584-00902757EA8D) ,
helpstring("demoadapt Class")

]
coclass demoadapt

{

[default] interface ImwAdaptor;
b

Note You must change the UUID by running GUIDgen to create a new
UUID, and you must change the references to “demo” to the name of your
adaptor.

Note that this definition must appear within the definition of the type library.

Step 2.4 Add the Demo Adaptor Class Code

Copy the files demoadapt.h and demoadapt. cpp into your project directory, and
rename them by replacing “demo” with your adaptor name. The best way to do
this is to perform a global search and replace on both files, replacing “demo”
with the name of your adaptor.

You must remove or comment out some portions of the adaptor code in order to
test the adaptor in the next step.

® Remove the #include lines that import the Analog Input and Analog Output
header files into your adaptor code. You will add those in later stages.

¢ Comment out the blocks of text surrounded by

About the Demo Adaptor Software

//TO_DO
//END TO_DO

code segments in the adaptor’s OpenDevice method. You will require that
code in later stages, and you do not actually create a device until that stage.

Make the following changes to the main project file (xyz.cpp in this example):

® Add a #include for the adaptor header in the main project.

® You also need to add the adaptor definition to the OBJECT MAP in the main
project file. As an example, the following entry would be made for the
adaptor named “xyz”:

BEGIN_OBJECT_MAP (ObjectMap)
OBJECT_ENTRY (CLSID_ xyzadapt, Cxyzadapt)
END_OBJECT_MAP ()

The class ID of your adaptor is generated automatically by the MIDL
compiler.

Building and Testing the Demo Adaptor

You should now be able to build and test your demo adaptor, using the Debug
settings. Once the adaptor has successfully built, you should be able to launch
MATLAB and register and query the adaptor using the following MATLAB
code:

dagregister <PathToProject>\Debug\<adaptorname>.dll
daghwinfo <adaptorname>

where <PathToProject> is the full path to your adaptor project and
<adaptorname> is the name of your adaptor. You should get back fictitious
results similar to the following:

» daghwinfo xyz
ans =
AdaptorDllName: 'c:\xyzadaptor\xyz.dll'
AdaptorDllvVersion: '1, 0, 0, 1'
AdaptorName: 'xyz'
BoardNames: {'xyz Board 0' 'xyz Board 1'}
InstalledBoardIds: {'0" '1'}
ObjectConstructorName: {2x3 cell}

3-15

3 Step-by-Step Instructions for Adaptor Creation

If this is successful, you are ready to implement the next step of the adaptor. If
the results are not similar, or if you get an error message, you need to check
that all steps outlined previously have been carried out.

Step 2.5 Modify the Adaptor Class Adaptorinfo()
Method

In Step 2.3, the adaptor reported fictitious board information. The previous
step simply confirmed that the adaptor was compiling correctly, and
registering as a valid data acquisition adaptor object. In the final step of Stage
2 you should implement code that checks the installed hardware on the system
by modifying the AdaptorInfo method of the adaptor class to provide
information about the installed hardware systems supported by the adaptor.
Typically, this would take the form of querying a device driver for any board
information that it can find, from the registry or other means.

For an example of how AdaptorInfo is implemented, consult the Keithley or
ComputerBoards adaptors.

Note The AdaptorInfo method makes extensive use of SafeArrays to pass
information back to MATLAB. See “Passing Arrays to MATLAB Using Safe
Arrays” in Chapter 4 for some ideas on how to do this in your adaptor.

The objective of this step is to make the information reported by a call to

daghwinfo <adaptorname>

return the correct information for installed boards. For example, a call to the
Keithley adaptor on a machine with four hardware devices produces the
following results:

>> d=daghwinfo('keithley"')
d =
AdaptorDl11lName: [1x58 char]
AdaptorDllVersion: 'Version 1.1 (R12.1+) 23-Aug-2001"
AdaptorName: 'keithley
BoardNames: {'KPCI-1801HC' 'KPCI-3110' 'KPCI-3108'
'KPCI-PIO96'}
InstalledBoardIds: {'0' '5' *'1' ‘'2'}
ObjectConstructorName: {4x3 cell}

About the Demo Adaptor Software

Typically device drivers provide some mechanism for differentiating between
multiple hardware devices. The Data Acquisition Toolbox assumes that boards
are referenced by a unique integer board identifier, listed as the
InstalledBoardIds field from the result of the daghwinfo call. If the device
driver for your adaptor does not implement this system, you should enforce a
board identifier on each unique board found by the device drivers, using an
appropriate convention. In the example above, four Keithley Instruments
boards have been installed on the machine, and their board IDs are 0, 5, 1, and
2, respectively.

The ObjectConstructorName field returned by the daghwinfo call lists the
object constructor code that can be used to create each of the Analog Input,
Analog Output, and Digital I/O subsystems (the columns of the cell array) for
each board (the rows of the cell array). If your adaptor is not implementing any
of the subsystems, you should remove the constructor string for that particular
subsystem. Similarly, if some boards implement a system while others do not,
you should leave the unsupported subsystem columns empty for that row of the
cell array.

3-17

3 Step-by-Step Instructions for Adaptor Creation

3-18

Stage 3

Implement the Analog Input Subsystem

Although all subsystems of an adaptor should be considered equally important,
the most commonly implemented subsystem is analog input (since most users
of the Data Acquisition Toolbox require measurement of real-world signals).
The Adaptor Kit therefore implements the analog input subsystem as the first
subsystem of the adaptor. This stage presents a significant discussion of the
techniques used in developing the adaptor’s subsystems; the steps required to
implement the Analog Output and Digital I/O subsystems are similar. Stages
4 and 5 therefore draw heavily on material discussed in this stage.

Implementation of the Analog Input subsystem takes place in the following
steps:

1 Select the default values, ranges, and other characteristics of the analog
input subsystem properties.

2 Create the Analog Input COM interface and class definitions in the IDL file,
and incorporate the demo adaptor analog input implementation in your
project.

3 Modify the OpenDevice method of the adaptor class to create the required
subsystem when requested.

4 Modify the Open and SetDagHwInfo methods of the Analog Input class to
handle device initialization, create custom properties, and set defaults and
ranges for all properties.

5 Implement the SetProperty and SetChannelProperty methods of the
Analog Input class to handle property changes.

6 If necessary, overload the ChildChange method of the Analog Input class to
handle channel addition and removal.

7 Implement the GetSingleValue method if software clocking is to be used.

8 Implement the GetSingleValues method if the device driver supports easy
single acquisition from multiple channels.

About the Demo Adaptor Software

9 Implement the Start, Trigger, and Stop methods for buffered acquisition.
Typically, this step involves writing buffering routines and message
handlers, and might require multithreading of the adaptor.

Each of these steps is discussed in detail in the following sections.

Note You should use the answers to the questions posed in Stage 1 to decide
which of the preceding steps you will implement in your adaptor.

Step 3.1 Select Property Values, Ranges, and
Defaults for Analog Input

In order to control the behavior of a task (such as duration and volume of
acquisition, type of triggering, clocking, and event callbacks) the MATLAB
user modifies the properties of the Data Acquisition Toolbox analoginput
object representing the data acquisition hardware he/she is using. The adaptor
must use the property values during acquisition tasks to control driver
settings, return messages, and start and stop acquisition. The adaptor must
also provide the data acquisition engine with appropriate properties, ranges,
and default values for the specific hardware referenced by the adaptor.
Successfully creating an adaptor therefore requires careful thought about the
existing common Analog Input subsystem properties, and the addition of
adaptor-specific properties where appropriate.

For both common and adaptor-specific properties, the adaptor might need to
control default values of a property in response to user changes in any
associated properties (for example, when the user changes the
ChannelSkewMode property, the range for the ChannelSkew property needs to
change to reflect the new mode). The first step in building any subsystem is to
plan these default values and ranges and decide on any additional properties
that are required in order to describe the hardware completely. For example,
the Keithley adaptor implements stop triggers using various additional
properties such as StopTriggerType, StopTriggerChannel, etc.

Typically, this step consists of compiling a propinfo table of all common
properties for the particular subsystem, and filling in the following
information:

® Type: The MATLAB data type (one of double or string)

3-19

3 Step-by-Step Instructions for Adaptor Creation

3-20

¢ Constraint: The constraint on the property. Typically, this is Bounded, if the
property lies within a defined range, Enum if the property is one of an
enumerated list of available values, or None if the property can take on any
value.

¢ Constraint Value: The limits for a bounded constraint, or the list of
possible values for an enumerated list.

¢ Default Value: The value of the property when the object is first created. If
this might change, indicate all possible values with a note.

® Read Only: A flag indicating whether the property can be changed by the
user.

® Read Only Running: A flag indicating that the property cannot change
while an acquisition task is running.

® Device Specific: If the property is specific to the particular adaptor or is
defined by the engine.

® Attach: Whether the property is to be attached to (for information on
attaching to properties, see “Attaching to a Property” in Chapter 4).

¢ Notes: Any particular note about the property, including the source of the
default values (for example, the driver, or an INI file), how the property
might change based on other properties, and any additional implementation
information.

The propinfo table should reflect the state of the desired output from a call to
the propinfo method of the analoginput object. Thus, when you run

propinfo(analoginput (<adaptor>))

the result should be the data presented in the propinfo table. The output of
the MATLAB code given above provides a test to confirm that these properties
have been created and initialized successfully.

The table should include only those properties that are directly related to the
device hardware, and should not include properties that are used for logging to
disk, function callbacks, event information, or internal housekeeping.

For a complete list of properties supported by the adaptor, consult the Data
Acquisition Toolbox User’s Guide

A direct consequence of producing this table is discovering which properties
your adaptor will have to monitor closely. Monitoring of a property involves
registering that property with the data acquisition engine, effectively notifying

About the Demo Adaptor Software

the engine that the adaptor has a particular interest in being notified
whenever the user changes that property. This process, called attaching to the
property, allows methods within the adaptor to be called whenever that
property changes. Consequently, the adaptor would be able to change other
property enumerated lists, or perform additional checks on a selection of
properties to ensure that the subsystem does not perform illegal operations
when an acquisition is started. For more information on attaching to
properties, see “Attaching to a Property” in Chapter 4.

A sample propinfo table is presented in Table 3-2, showing only two properties
from an adaptor.

Table 3-2: Sample of Propinfo Table for Analog Input Object

Property/Field Value
ChannelSkew
Type Double
Constraint fixed
Constraint Value 5e-6 for Minimum

1/SampleRate for Equisample
Default 5e-6 if Minimum supported, else 1/1000.
ReadOnly 1

ReadOnly Running 1

Device Specific 0

Attach 0

Note Check driver for burst mode support.
ChannelSkewMode

Type String

Constraint Enum

3-21

3 Step-by-Step Instructions for Adaptor Creation

3-22

Table 3-2: Sample of Propinfo Table for Analog Input Object (Continued)

Property/Field Value
Constraint Value Minimum
Equisample

Default Minimum

ReadOnly 0

ReadOnly Running 1

Device Specific 0

Attach 1

Note Mimimum only if ADBURST is supported. Change

sets ChannelSkew.

The outcome of Step 3.1 is a document that forms the blueprint for the
implementation of properties in later steps of this stage.

Step 3.2 Add the Demo Analog Input Code to Your

Project

When the IDL file was created, only the adaptor component was included. The

IDL file must expose the Analog Input interface to the engine, so that the
engine can access the methods in the analog input implementation.

Both the interface and the class need to be defined in the IDL file. Specify the

interface prior to the specification of the Adaptor Type Library, so that the

library can use the new interface in the Analog Input class. The following tasks

should be completed in this stage:

¢ Add the interface definition prior to the type library definition. The Analog

Input interface should inherit from the IDispatch interface (although the

IDispatch interface is not currently implemented, the engine assumes that

the Analog Input interface inherits from IDispatch). Sample code for the

XYZ adaptor follows:

[
object,

uuid (E721C893-C230-4eae-9F78-B33E30F74B4E),

About the Demo Adaptor Software

dual,
helpstring("IxyzAin Interface"),
pointer_default(unique)

]

interface IxyzAin : IDispatch

i}

¢ Be sure to change the UUID, using GUIDgen, so that your adaptor has a
unique ID.
¢ Add the Analog Input class to the type library (if using the following code, be
sure to change the UUID of your class using GUIDGen):
// Define the xyzAin class:

[
uuid(83D8B96C-FEQA-46c7-AAB9-6B3C67FDE863) ,

helpstring("xyzAin Class")
]

coclass xyzAin

{
[default] interface IxyzAin;
interface ImwDevice;
interface ImwInput;

}s

The Analog Input class should inherit the ImwDevice and ImwInput
interfaces, and your Analog Input interface defined in the adaptor.

® Copy the Analog Input files from the demo adaptor, renaming the files
appropriately. In order to facilitate the search and replace operation
described below, you should simply replace the word “demo” in the filenames
with your adaptor name. For example, the file demoain.cpp would become
Xyzain.cpp.

® Search for all instances of the word “demo” and replace that with your
adaptor name.

Note Remember to do this with both the .cpp and the . h files. Unfortunately,
the current Microsoft Visual C IDE does not support search and replace across
multiple files.

3-23

3 Step-by-Step Instructions for Adaptor Creation

3-24

In the next step, you test the changes made in this step by providing sufficient
code to enable the creation of the your analog input object as a duplicate of the
demo adaptor with a new name.

Step 3.3 Modify the OpenDevice Method of the
Adaptor Class

In this step of the implementation of the analog input object, you ensure that
the renamed demo adaptor still works in MATLAB.

¢ Uncomment the analog input construction statements in the OpenDevice
method of the Adaptor class. Be sure to include the Analog Input class
header file in the adaptor class implementation file.

¢ Compile the project, and you should be able to launch MATLAB and create
an analog input object for your adaptor:

ai = analoginput('xyz');

If the compilation fails, you should ensure that all header files have been
created, and that your analog input class name is consistent throughout the
project. Also ensure that all the steps from the previous stage have been
implemented as well.

Your adaptor should now contain a complete analog input object, which
implements software clocking on a fake acquisition channel (the acquisition
returns a sine wave from an internal function, and not from any hardware
device). In future stages of the analog input implementation, you will
progressively implement hardware acquisition tasks. The first of these stages
is to ensure that the adaptor’s properties are initialized correctly, possibly from
hardware device detection.

Step 3.4 Modify the Analog Input Open and
SetDagHwinfo Methods

The Open method is called by the Adaptor class OpenDevice method to create
an analog input subsystem for a particular device. The Open method is
responsible for checking that the required device has the requested subsystem,
initializing the subsystem hardware (if necessary), and configuring the
subsystem properties correctly.

You create analog input subsystems by specifying two parameters: the adaptor
name and the device ID. Your adaptor code needs to use the device ID to

About the Demo Adaptor Software

provide the device driver with a specific reference to the desired hardware
device. The device ID is passed as the second parameter of the Open method.
The first parameter is a pointer to the Engine interface, and this should also be
stored by the adaptor to gain access to engine methods.

The Open method typically also calls the SetDagHwInfo method, to define
hardware and driver information for the subsystem.

The demo adaptor provides a sample Open method that illustrates the basic
ideas of opening an analog input subsystem:

¢ The base engine’s Open method is called. This creates a link to the engine and
defines a variable _engine containing a pointer to the engine’s interface
methods.

® The ClockSource and InputType properties are initialized as remote
properties (for a discussion of properties, see Chapter 4, “Working with
Properties”).

® The ClockSource and InputType properties are modified to reflect the demo
adaptor state more closely.

® The DagHwInfo properties are set by the call to InitHwInfo.

All adaptors need to follow the preceding pattern (the InitHwInfo method can
be replaced by a call to SetDagHwInfo), and include the following additional
code:

® Code to initialize the device driver and hardware, if necessary

® Code to check the device ID to confirm that the requested hardware exists

® Code to attach to the required properties listed in Step 3.1 (see “Attaching to
a Property” in Chapter 4)

® Code to create adaptor-specific properties

A full discussion of interaction with properties is given in Chapter 4, “Working
with Properties.”

Because all Open methods typically include a call to SetDagHwInfo, you should
implement SetDagHwInfo prior to testing the hardware-specific adaptor.

The Data Acquisition Toolbox allows the user to query a specific subsystem to
obtain hardware information for that specific subsystem. A MATLAB user
would type the following code to obtain information about the XYZ adaptor
analog input device 5:

3-25

3 Step-by-Step Instructions for Adaptor Creation

3-26

>> daqghwinfo(analoginput('xyz', 5))

Note You could split this MATLAB statement into two by assigning the
analoginput object to a variable. Either way, the Data Acquisition Toolbox
first creates the subsystem and then provides hardware information about
that subsystem.

The information for a call to a subsystem’s daghwinfo method is obtained by
calling the SetDagHwInfo method of the requested subsystem. The
SetDagHwInfo method should also be called by the Open method to initialize
these values on startup.

The SetDagHwInfo method should use the daghwinfo IPropContainer
member variable defined in the ImwDevice interface class. Every subsystem
inherits from ImwDevice, and so already defines the daghwinfo member
variable. You put information into the daghwinfo IPropContainer by using
the IPropContainer put_memberValue method. Table 3-3 lists the values that
you should place in _daghwinfo, and describes the type of data that should be
used for each member value. For sample code, see the SetDagHwInfo method of
any of the adaptors included with the Data Acquisition Toolbox.

Table 3-3: SetDaqHwlInfo Member Variables and Descriptions

Member Value Description Data Type (C++)

adaptorname Name of the adaptor String

bits Resolution of analog input subsystem Double

coupling Device coupling (can be set to “Unknown”) String

devicename Name of device. Typically, the name is String
given as “<adaptorname>AI-<id>".

differentialids Channel IDs for differential channels (or SafeArray (1 x nD)
empty if differential mode is not supported)

gains Allowable gains for channels SafeArray (1 x nG)

About the Demo Adaptor Software

Table 3-3: SetDaqHwlInfo Member Variables and Descriptions (Continued)

Member Value Description Data Type (C++)
id Device ID Double
inputranges Allowable input ranges SafeArray (1 x nR)
maxsamplerate Maximum permissible sample rate Double
minsamplerate Minimum permissible sample rate Double
nativedatatype The data type of raw data that MATLAB VariantType

can send to the hardware device. The
engine uses this value to convert voltages to
units that the hardware understands.

polarity Vector of allowable polarit